
Massively Parallel GPU Computing
with CUDA: Introduction

Overview of CUDA memory hierarchy
Introduction to CUDA Deep Neural Network library (cuDNN)

Arnis Lektauers, Riga Technical University
arnis.lektauers@rtu.lv

20. 01. 2022.

mailto:arnis.lektauers@rtu.lv

Day 2: Content

1. Overview of CUDA memory hierarchy:
• An overview of memory levels
• Global memory
• Registers, constant memory, texture memory
• Shared memory and synchronization

2. Introduction to CUDA Deep Neural Network library ﴾cuDNN﴿:
• Using cuDNN for deep neural networks
• Convolutional neural networks in cuDNN
• Integration with other CUDA libraries ﴾cuBLAS, cuSOLVER, cuRAND, cuTENSOR, TensorRT﴿

3. Exercises on CUDA techniques: neural network implementation
• Implementation from scratch with C/C++
• Implementation from scratch with Python and CuPy
• Implementation using cuDNN

Massively Parallel Computing with CUDA: Introduction 2

CUDA Memory Hierarchy

Massively Parallel Computing with CUDA: Introduction 3

CUDA Memory Architecture

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory

Constant and Texture
Caches

L1 / L2 Cache

Massively Parallel Computing with CUDA: Introduction 4

CUDA Memory Hierarchy

DRAM

Thread

Shared Memory L1 Cache Texture Cache

L2 Cache

Fermi and Kepler memory hierarchy

• L1 cache: 64 KB on‐chip memory for each
SM

• L2 cache:
• 768 KB ﴾Fermi GF100﴿
• 1536 KB ﴾Kepler GK110﴿

• Texture ﴾Read‐Only Data﴿ cache:
• 12 KB ﴾Fermi GF100﴿
• 48 KB ﴾Kepler GK110﴿

Massively Parallel Computing with CUDA: Introduction 5

CUDA Memory Types

CUDA device memory can be allocated and accessed in a variety of ways:

• Global memory may be allocated statically or dynamically and accessed via pointers in
CUDA kernels, which translate to global load/store instructions

• Constant memory is read‐only memory accessed via different instructions that cause
the read requests to be serviced by a cache hierarchy optimized for broadcast to
multiple threads

• Local memory contains the stack: local variables that cannot be held in registers,
parameters, and return addresses for subroutines

Massively Parallel Computing with CUDA: Introduction 6

CUDA Memory Types (1)

• Texture memory is accessed via texture and surface load/store instructions
Like constant memory, read requests from texture memory are serviced by a separate
cache that is optimized for readonly access

• Shared memory is an important type of memory in CUDA that is not backed by device
memory
Instead, it is an abstraction for an on‐chip “scratchpad” memory that can be used for
fast data interchange between threads within a block

Massively Parallel Computing with CUDA: Introduction 7

Host Memory

Host memory refers to memory accessible to the CPU﴾s﴿ in the system

• Host memory is managed with malloc﴾﴿/free﴾﴿ and new[]/delete[]
• On all operating systems that run CUDA, host memory is virtualized

Pinned memory is a host memory that has been page‐locked and mapped for access by
the CUDA hardware

• In the context of operating system, the terms page‐locked and pinned are synonymous
• Pinned host memory is allocated by CUDA with the functions
cuMemHostAlloc﴾﴿ / cudaHostAlloc﴾﴿ and freed with cuMemFreeHost﴾﴿ / cudaFreeHost﴾﴿

Massively Parallel Computing with CUDA: Introduction 8

Global Memory

Global memory is the main abstraction by which CUDA kernels read or write device
memory

• Global memory is available to all blocks and all threads
• The device pointer base resides in the Device Address Space, separate from the CPU
address space used by the host code in the CUDA program

• When using the CUDA runtime, device pointers and host pointers both are typed as
void *• Most global memory in CUDA is obtained through dynamic allocation using the
functions
cudaError_t cudaMalloc(void **, size_t);
cudaError_t cudaFree(void);

• It is possible to create Pitched memory allocations

The Pitch of the array is the number of bytes per row of the arrayMassively Parallel Computing with CUDA: Introduction 9

Global Memory
Data Indexing

1-D Array 2-D Array

Dx

Dy

Dz
Dx

Dy

3-D Array

x + y * Dx

x + y * Dx + z * Dx * Dy

Massively Parallel Computing with CUDA: Introduction 10

Global Memory
Data Indexing (1)

• 1D data array:
int idx = threadIdx.x + blockIdx.x * blockDim.x;

• 2D data array:
dim3 blksz (8, 8, 1); // Block size
// Number of blocks required for the whole array.
// Always round this number up
dim3 grdsz ((nx + blksz.x ‐ 1) / blksz.x, (ny + blksz.y ‐ 1) / blksz.y, 1);
my_kernel<<<grdsz, blksz>>>(...);

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int idx = i + j * nx; // global index in the linear array

Massively Parallel Computing with CUDA: Introduction 11

Global Memory
Data Indexing (2)

• 3D data array:

dim3 blksz (8, 8, 8); // Block size
// Number of blocks
dim3 grdsz ((nx + blksz.x ‐ 1) / blksz.x,

(ny + blksz.y ‐ 1) / blksz.y,
(nz + blksz.z ‐ 1) / blksz.z);

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int k = blockIdx.z * blockDim.z + threadIdx.z;
int idx = i + j * nx + k * nx * ny; // global index in the linear array

Massively Parallel Computing with CUDA: Introduction 12

Constant Memory

Constant memory is optimized for read‐only broadcast to multiple threads

• The compiler for constants has 64K of memory available to use
• Constant memory resides in device memory but is accessed using different instructions
that cause the GPU to access it using a special “Constant Cache”

• CUDA constats are declared with the __constant__ keyword
• __constant__ memory can be changed:

• By memory copies
• By querying the pointer to __constant__ memory and writing to it with a kernel

• CUDA runtime applications can copy to and from __constant__ memory using functions
cudaMemcpyToSymbol﴾﴿, cudaMemcpyFromSymbol﴾﴿

• The pointer to __constant__ memory can be queried with cudaGetSymbolAddress﴾﴿

Massively Parallel Computing with CUDA: Introduction 13

Local Memory

Local memory contains the stack for every thread in a CUDA kernel

• Supported by the L1 cache
• Configurable size ﴾functions cudaFuncSetCacheConfig﴾﴿ or
cudaDeviceSetCacheconfig﴾﴿﴿:

• Fermi: 16; 48 KB
• Kepler: 16; 32; 48 KB

It is used as follows:
• To implement the Application Binary Interface ﴾ABI﴿ ‐ that is, the CUDA calling
convention

• To spill data out of registers
• Local to each thread in the block
• Very fast

Massively Parallel Computing with CUDA: Introduction 14

Texture Memory

The concept of CUDA Texture Memory is realized in two parts:
• CUDA Array that contains the physical memory allocation
• Texture Reference or Surface Reference

CUDA Arrays are allocated from the same pool of physical memory as device memory, but
they have an opaque layout that is optimized for 2D and 3D locality

Texture References are objects that CUDA uses to set up the texturing hardware to
“interpret” the contents of underlying memory

Texture memory features:
• You can read data from here fast!
• But cannot write data directly
• Available to all blocks and all threads

Massively Parallel Computing with CUDA: Introduction 15

Texture Memory (1)

• Texture reference is declared by invoking a template called texture
texture<Type, Dimension, ReadMode> Name

• The texture reference must be bound to underlying memory before it can be
used:

• 1D device memory: cudaBindTexture﴾﴿
• 2D device memory: cudaBindTexture2D﴾﴿

• Once the texture reference is bound to underlying memory, CUDA kernels may
read the memory by invoking:

• 1D: tex1D﴾float x, float y﴿
• 2D: tex2D﴾float x, float y﴿

Massively Parallel Computing with CUDA: Introduction 16

Shared Memory

Shared memory is used to exchange data between CUDA threads within a block

• Local to the block
• Difficult to use correctly – but very
powerful

• Accessible by all threads in a block
• Fast compared to global memory

• Low access latency
• High bandwidth ﴾10‐150x faster than
global memory﴿

• Common uses:
• Reducing multiple loads of device data
• Data layout conversion

Global Memory (DRAM)

Registers
SM-0

Registers
SM-N

SMEM SMEM

Massively Parallel Computing with CUDA: Introduction 17

Shared Memory (1)

Kernels that use shared memory typically are written in three phases:
1. Load shared memory and __syncthreads﴾﴿
2. Process shared memory and __syncthreads﴾﴿
3. Write results

L1 Cache Sizing:
• Shared memory and L1 use the same 64KB program‐configurable split:

• Fermi: 48:16, 16:48
• Kepler: 48:16, 16:48, 32:32
• CUDA API for specifying the preferred cache configuration:
cudaDeviceSetCacheConfig﴾﴿, cudaFuncSetCacheConfig﴾﴿

• Large L1 can improve performance when:
• Spilling registers ﴾more lines in the cache ‐> fewer evictions﴿

Massively Parallel Computing with CUDA: Introduction 18

More on Memory Spaces

• Each thread can:
• Read/write per‐thread registers
• Read/write per‐block shared memory
• Read/write per‐grid global memory
• Most important, commonly used

• Each thread can also:
• Read/write per‐thread local memory
• Read only per‐grid constant memory
• Read only per‐grid texture memory
• Used for convenience/performance

• The host can read/write global, constant, and
texture memory ﴾stored in DRAM﴿

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Massively Parallel Computing with CUDA: Introduction 19

CUDA Unified Memory
Super Simplified Memory Management Code

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

CPU Code CUDA 6 Code with Unified Memory

Massively Parallel Computing with CUDA: Introduction 20

CUDA Libraries

Massively Parallel Computing with CUDA: Introduction 21

CUDA Libraries

CUDA Toolkit includes several libraries, for example:
• CUBLAS ‐ Complete BLAS Library
• CUSPARSE ‐ Sparse Matrix Library
• CUFFT ‐ Fast Fourier Transforms Library
• CURAND ‐ Random Number Generation ﴾RNG﴿ Library
• Thrust ‐ Templated Parallel Algorithms & Data Structures
• NPP ‐ Performance Primitives for Image & Video Processing

Massively Parallel Computing with CUDA: Introduction 22

CUBLAS: Dense Linear Algebra on GPUs

• CUBLAS ‐ implementation of BLAS ﴾Basic Linear Algebra Subprograms﴿
• Self‐contained at the API level
• Supports all the BLAS functions

• Level1 ﴾vector, vector﴿: O (N)
• AXPY : y = alpha.x + y
• DOT : dot = x.y

• Level 2 ﴾matrix, vector﴿: O
(
N2

)
• Vector multiplication by a General Matrix : GEMV
• Triangular solver : TRSV

• Level 3 ﴾matrix, matrix﴿: O
(
N3

)
• General Matrix Multiplication : GEMM
• Triangular Solver : TRSM

• Following BLAS convention, CUBLAS uses column‐major storage

Massively Parallel Computing with CUDA: Introduction 23

CUBLAS Features

• Support of 4 types :
• Float, Double, Complex, Double Complex
• Respective Prefixes : S, D, C, Z
• Contains 152 routines : S﴾37﴿, D﴾37﴿, C﴾41﴿, Z﴾41﴿
• Function naming convention: cublas + BLAS name
• Example: cublasSGEMM

• S: single precision ﴾float﴿
• GE: general
• M: multiplication
• M: matrix

Massively Parallel Computing with CUDA: Introduction 24

Using CUBLAS

• Interface to CUBLAS library is in cublas.h
• Function naming convention

• cublas + BLAS name
• E.g., cublasSGEMM

• Error handling
• CUBLAS core functions do not return error

• CUBLAS provides function to retrieve last error recorded
• CUBLAS helper functions do return error

• Helper functions:
• Memory allocation, data transfer
Massively Parallel Computing with CUDA: Introduction 25

Introduction to CUDA Deep Neural
Network library ﴾cuDNN﴿

Massively Parallel Computing with CUDA: Introduction 26

Machine Learning Frameworks and Libraries

Massively Parallel Computing with CUDA: Introduction 27

GPU Tensor Cores

• Starting with the Volta architecture, the cuDNN and cuBLAS libraries support GPU
Tensor Cores

• GPU tensor cores work at hardware level with 4× 4 matrices

• For the programmer, the only operation allowed when using tensor cores is the
Matrix‐Multiply‐Accumulate ﴾MMA﴿ operation

• CUDA programming model exposes the MMA operation in terms of dimensions
m× n× k: Dm×k = Am×n ×Bn×k + Cm×k, where m× n, n× k, m× k cannot exceed
256 elements

Massively Parallel Computing with CUDA: Introduction 28

cuDNN

• cuDNN ﴾CUDA Deep Neural Network﴿ ‐ a low‐level library that provides
optimised GPU implementations of neural network primitives ﴾convolutions,
activations, etc.﴿
https://developer.nvidia.com/cudnn

• The main features of cuDNN:
• Convolution forward and backward, including cross‐correlation
• Matrix multiplication
• Pooling forward and backward
• Softmax forward and backward
• Neuron activations forward and backward: relu, tanh, sigmoid, elu, gelu, softplus, swish
• Arithmetic, mathematical, relational and logical pointwise operations
• Tensor transformation functions
• LRN, LCN and batch normalization forward and backward

Massively Parallel Computing with CUDA: Introduction 29

https://developer.nvidia.com/cudnn

cuDNN (1)

cuDNN is used in the background by most popular high‐level neural network libraries,
including PyTorch and TensorFlow

Massively Parallel Computing with CUDA: Introduction 30

TensorRT

TensorRT ‐ C++/Python SDK for high‐performance deep learning inference:
https://developer.nvidia.com/tensorrt
• Built on the basis of cuDNN and cuBLAS
• Can optimize neural network models trained in all major frameworks, calibrate for lower
precision with high accuracy, and deploy to hyperscale data centers, embedded, or
automotive product platforms

Massively Parallel Computing with CUDA: Introduction 31

https://developer.nvidia.com/tensorrt

cuDNN programming Model

• The cuDNN library exposes a host API but assumes that for operations using the GPU,
the necessary data is directly accessible from the device

• An application using cuDNN must initialize a handle to the library context by calling
cudnnCreate(cudnnHandle_t *handle)

• Once the application finishes using cuDNN, it can release the resources associated with
the library handle using cudnnDestroy(cudnnHandle_t handle)

• Almost every function we will talk about today returns a cudnnStatus_t ﴾an enum
saying whether a cuDNN call was successful or how it failed﴿

Massively Parallel Computing with CUDA: Introduction 32

Tensor Descriptor

• The cuDNN library describes data holding images, videos and any other data
with contents with a generic n‐D tensor defined with the following parameters:

• Dimension nbDims from 3 to 8
• Data type ﴾32‐bit floating‐point, 64 bit‐floating point, 16‐bit floating‐point...﴿
• dimA integer array defining the size of each dimension
• strideA integer array defining the stride of each dimension ﴾for example,
the number of elements to add to reach the next element from the same
dimension﴿

Massively Parallel Computing with CUDA: Introduction 33

Tensor Descriptor
Tensor Formats

• WXYZ tensor descriptor: the tensor descriptor format is identified by acronyms, and
each letter refers to the corresponding dimension

• 4‐D tensor descriptor: define the format of 4‐letter batch 2D images. N, C, H, W
represent batch size, number of feature maps, height and width respectively

• Commonly used 4‐D tensor formats:
• NCHW
• NHWC
• CHWN

• 5‐D tensor descriptor: contains 5 letters: N, C, D, H, W represent batch size, number of
feature maps, depth, height and width

• Commonly used 5‐dimensional tensor formats:
• NCDHW
• NDHWC
• CDHWN

Massively Parallel Computing with CUDA: Introduction 34

Data Layout Formats
Data Layout Example

Consider a batch of images in 4D with the following dimensions: N = 1 ﴾batch size﴿; C = 64
﴾number of feature maps ﴾i.e., number of channels﴿﴿; H = 5 ﴾image height﴿;W = 4 ﴾image
width﴿

Massively Parallel Computing with CUDA: Introduction 35

drive. enable. innovate.

The CoE RAISE project has received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

	Overview of CUDA memory hierarchy
	CUDA Libraries
	Introduction to CUDA Deep Neural Network library (cuDNN)

