

Massively Parallel GPU Computing with CUDA: Introduction

Overview of CUDA Architecture and CUDA Programming Model

Arnis Lektauers, Riga Technical University arnis.lektauers@rtu.lv

19.01.2022.

Day 1: Content

- 1. Overview of CUDA architecture and programming model:
 - GPU evolution
 - CUDA GPU architecture
- 2. Basic CUDA programming:
 - Brief revise of CUDA programming model
 - Key principles
 - Introduction to the concept of threads & blocks
 - Host-device data transfer
- 3. Hands-on exercises on writing simple CUDA programs:
 - Simple programs with C/C++
 - Using CUDA on HPC cluster
 - Simple programs with Python and CuPy

GPU Computing

- GPU Graphics Processing Unit
 - Optimized for data-parallel, throughput computation
 - Traditionally used for real-time rendering
 - High computational density (100s of ALUs) and memory bandwidth (100+ GB/s)
 - Architecture tolerant of memory latency 1000s of concurrent threads to hide latency (vs. large fast caches)
- **GPGPU** General Purpose Computing on GPU

GPU History

- 1. 1951 1976: Formation of the base for today's GPUs
- 2. 1976 1995: The early days of 3D consumer graphics
- 3. 1995 1999: 3Dfx Voodoo: the game-changer
- 4. 2000 2006: The Nvidia vs. ATI Era Begins
- 5. 2006 2013: The modern GPU: stream processing units a.k.a. GPGPU
- 6. 2013 2020: Pushing GPU technology into new territory

CPU vs GPU Performance

Peak memory bandwidth in GB/s and peak double precision gigaflops for GPUs and CPUs since 2008

Source: The Next Platform: A Decade of Accelerated Computing Augurs Well for GPUs, 2019

What is CUDA?

CUDA (*Compute Unified Device Architecture*) is a parallel computing platform and programming model created by NVIDIA and implemented by the graphics processing units (GPUs) that they produce

- Introduced in February 2007
- CUDA Architecture
 - Expose GPU computing for general purpose
 - Computing for general purpose
- CUDA C/C++
 - Based on industry-standard C/C++
 - Small set of extensions to enable heterogeneous programming
 - Straightforward APIs to manage devices, memory etc.

CUDA GPU Product Families

CUDA Parallel Computing Platform

CUDA Software Levels

GPU Hardware Generations

• Tesla hardware debuted in 2006, in the GeForce 8800 GTX (G80)

- CUDA cores: 240
- Compute capability: 1.0-1.3
- Fermi hardware debuted in 2010, in the GeForce GTX 480 (GF100)
 - CUDA cores: 512
 - 64-bit addressing
 - L1 and L2 cache
 - Compute capability: 2.0, 2.1
- Kepler hardware debuted in 2012, in the GeForce GTX 680 (GK104)
 - CUDA cores: 1536 (GK104), 2880 (GK110)
 - Compute capability: 3.0, 3.5

GPU Hardware Generations (1)

- Maxwell hardware debuted in 2014, in the GeForce GTX 750 Ti (GM107):
 - CUDA cores: 640 (GM107)
 - Compute capability: 5.0
- Two generations of Maxwell GPU:
 - 28nm: GM108, GM107
 - 20nm: GM206, GM204, GM200

GPU Hardware Generations (2)

- Pascal debuted in 2016, in the GeForce GTX 1080 (GP100):
 - CUDA cores: 3840
 - 16 nm technological manufacturing process
 - HBM2 3D memory
 - 4096-bit memory bus
 - NVLink high speed GPU-CPU interconnection
 - Compute capability: 6.0
- Volta debuted in 2017, in the Tesla V100 (GV100)
- Turing debuted in 2018, in the GeForce RTX 2080 Ti (TU102)
- Ampere debuted in 2020, in the GeForce RTX 3080 (A100)

GPU Compute Capability

- The compute capability of a device describes its architecture, e.g.
 - Number of registers; sizes of memories; features & capabilities

Compute Capability	Main Features
1.0	CUDA basic support
1.3	Double precision, improved memory access, atomic functions
2.0	Cache improvements, 3D grid, surfaces, concurrent kernels, P2P
3.0	Improved performance, Warp Shuffle functions
3.5	Dynamic parallelism, Funnel Shift functions
5.0	Maxwell architecture support
6.0	Pascal architecture support
7.0	Volta architecture support
7.5	Turing architecture support
8.0; 8.6	Ampere architecture support

Fermi GPU Architecture Fermi GF100 Processor

RASE

- 3.0B Transistors
- 16 SM units
- 870 GFLOP FP64
- 768 KB L2 Cache
- 384-bit GDDR5
- PCI Express Gen2

Kepler GPU Architecture Kepler GK110 Processor

- 7.1B Transistors
- 15 SMX units

-				
		PCI Express 3.0 Host Interface		
		Law	5MX 60	w
Muntery Controller				
Menory Costroller		L2 Gache		
Memory Controller				Contraster

• > 1 TFLOP FP64

• 1.5 MB L2 Cache

- 384-bit GDDR5
- PCI Express Gen3

Graphics Processing Cluster (GPC) - dominant high-level GPU hardware block containing several *Streaming Multiprocessors* (SMs)

GPC encapsulates all key graphics processing units (e.g., *Scalable Raster Engine* for triangle setup, rasterization, and Z-cull)

Fermi GPU Architecture Streaming Multiprocessor (SM)

Streaming Multiprocessor (SM) - the part of the GPU that runs CUDA kernels

Each SM features:

- 32 CUDA processors (Cores)
- Special Function Units (SFUs) for single-precision mathematical approximations
- Dual warp scheduler
- Constant cache
- Shared memory
- Hardware for texture mapping
- PolyMorph Engine for vertex processing

Each CUDA **Core** has a fully pipelined integer Arithmetic Logic Unit (ALU) and Floating Point Unit (FPU)

- IEEE 754-2008 floating-point standard
- Fused Multiply-Add (FMA) instruction for both single and double precision
- Logic unit
- Move, compare unit
- Branch unit

Fermi GPU Architecture Warp Scheduling

The SM schedules threads in groups of 32 parallel threads called **Warps**

Each SM features:

- Two warp schedulers
- Two instruction dispatch units, allowing two warps to be issued and executed concurrently

Dual warp scheduling

Pascal GPU Architecture Tesla P100 GPU Accelerator for Servers

Pascal GPU Architecture GP100 Processor

- 56 streaming multiprocessors
- 3584 CUDA cores
- 5.3 TF double precision floating point format
- **10.6 TF** standard precision floating point format
- 21.2 TF half-precision floating point format
- 16 GB HBM2
- 720 GB/s memory bandwidth

Pascal GPU Architecture GP100 Streaming Multiprocessor

- 64 CUDA cores
- Register files: 256 KB
- Shared memory: 64 KB
- Active threads: 2048
- Active blocks: 32

_	_	_	octoucti	an Ruffa		_	Instruction Ruffer								
_	_	-	Ware Si	heduler		_	Warp Scheduler								
	Dispate	th Unit			Dispat	ch Unit		Dispatch Unit				Dispatch Unit			
		Regist	er File (32,768 x	32-bit)			Register File (32,768 x 32-bit)							
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
Core	Core	DP Unit	Core	Core	DP Unit		SFU	Core	Core	DP Unit	Core	Core	DP Unit		SF
							Texture /	L1 Cache	,						-
Tex														Tex	

Volta GPU Architecture Tesla V100 GPU Accelerator for Servers

Volta GPU Architecture V100 Processor

- 80 strreaming multitprocessors
- 5120 standard precision floating point CUDA cores
- 7.5 TF double precision floating point format
- **15 TF** standard precision floating point format
- 120 TF tensor core performance
- 16 GB HBM2
- 900 GB/s max. memory bandwidth

- 64 FP32 cores, 32 FP64 cores, 64 INT32 cores
- 8 new mixed precision FP16 / F32 tensor cores for deep learning matrix arithmetic
- The streaming multiprocessor is divided into 4 computing blocks, where each block contains:
 - 16 FP32, 16 INT32, 8 FP64 cores, 2 tensor cores
 - new L0 instruction cache
 - warp scheduler, dispatcher, 64 KB registry file
- Improved L1 data cache for higher performance
- Configurable max 96 KB of shared memory

Volta GPU Architecture V100 Streaming Multiprocessor

							L1 Instruc	tion Cache								
	_	1.0 1	ATO IC	iten C	ache	-	_		-	LOD	astraici	ion C	ache	_		
	Wat	o Sat	educe	1021	ine add	cibi		Warp Scheduler (32 thread\clk)								
	01	spatel	n Unit	32 th	readic	R)		Dispatch Unit (32 threak\cik)								
	Reg		File (1	6,314					Reg	ister	File (1	6,384				
794	NT	INT	FP32	6912				FP64	шт	INT	6932	FP32				
	INT	INT	P P 32	F#32				1954			FP32	P P 32				
	INT	INT	FP32	6932				FP64	INT		6932	6932				
	INT	INT	FP32	1932	TENS	SOR	TENSOR	FP54			FP 32	F 1932	TENSOR	TENSOF		
	INT	INT	P P 32	F#32	co	RE	CORE	1954			FP32	***32	CORE	CORE		
	INT	INT	FP32	1932				TP54	INT		FP32	FP32				
	INT	INT	P P 32	F#32				1954	INT	INT	FIP32	***32				
FP44	INT	INT	FP32	F#32				TPM	INT	INT	1932	ress				
87 87	in T	ŵ	107	81	61 61	÷		10 UP	67 67	÷	ŝ	ų,	81 B1			
	_	LOI	atruc	den C	acho	-			-	LOT	natrust	ion C	acha	_		
	Wat	p Bel	odufei	(32.1)	heards	(1))		Warp Scheduler (32 thread/c8)								
	Di	spate	n Unit	32 Ibi	reactic	R)			Dł	s period	h Unit i	32 th	read(clk)			
	Reg	Register File (16,314 x 32-bit)									Register File (16,384 x 32-bit)					
	INT	INT	FP32	1932				TINA	INT	INT	1932	FP32				
F764	NT NT	INT INT	F P 32 F P 32	FP32 FP32				TPM TPM	INT INT	NT NT	FP32 FP32	F P 3 2 F P 3 2				
794 994 794	NT NT NT	INT INT INT	F P32 F P32 F P32	FP32 FP32 FP32				1754 1754 1754	INT INT INT	2 2 2	FP32 FP32 FP32	FP32 FP32 FP32				
22 22 22 22 22 22 22 22 22 22 22 22 22	INT INT INT INT	INT INT INT	FP33 FP33 FP33 FP33	FP32 FP32 FP32 FP32	TEN	SOR	TENSOR	TPM PPM PPM PPM	INT INT INT INT	INT INT INT	FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32	TENSOR	TENSOR		
	NT NT NT NT	NT NT NT NT	FP32 FP32 FP32 FP32 FP32	F932 F932 F932 F932 F932	TEN	SOR	TENSOR	1956 1956 1956 1956 1956	INT INT INT INT	NT NT NT NT	FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32	TENSOR	TENSOR		
2 2 2 2 2 2 2	NT NT NT NT NT	NT NT NT NT NT	FP33 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32	TEN	sor RE	TENSOR	PNA PNA PNA PNA PNA PNA PNA	INT INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32	TENSOR	TENSOR		
2 2 2 2 2 2	NT NT NT NT NT NT NT	INT INT INT INT INT INT INT	FP33 FP33 FP33 FP33 FP33 FP33 FP33	FP32 FP32 FP32 FP32 FP32 FP32	TEN	SOR	TENSOR	FPM FPM FPM FPM FPM FPM FPM FPM	THE THE THE THE THE THE	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32	TENSOR	TENSOR		
274 274 274 274 274 274 274 274 274	NT NT NT NT NT NT NT		FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENS	SOR	TENSOR	1794 1794 1794 1794 1794 1794 1794	INT INT INT INT INT INT INT	NT NT NT NT NT NT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FF32 FF32 FF32 FF32 FF32 FF32 FF32	TENSOR	TENSOR		
201 201 201 201 201 201 201 201 201 201	NT NT NT NT NT NT NT LS LS	INT INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENS	SOR RE	TENSOR	FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT INT	NT NT NT NT NT NT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENSOR CORE	TENSOR CORE SFU		
	NT NT NT NT NT NT NT LL1	INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TEN: COI	SOR RE	TENSOR CORE	FPM FPM FPM FPM FPM FPM FPM FPM FPM	INT INT INT INT INT INT INT INT	NT NT NT NT NT Ltr	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TENSOR CORE	TENSOR CORE		

Turing GPU Architecture TU102 Processor

- 72 streaming multiprocessors
- 4608 CUDA cores
- **16.3 TF** standard precision floating point format
- 576 tensor cores
- 72 real-time rendering kernels
- 24GB GDDR6
- 672 GB/s max memory bandwidth

Ampere GPU Architecture GA102 Processor

- 72 streaming multiprocessors
- 10752 CUDA cores
- **30 TF** standard precision floating point format
- 336 tensor cores
- 84 real-time rendering kernels
- 128 KB L1 cache/shared memory
- Real-time high-quality ray tracing graphics

Basic CUDA Programming

Host - the CPU and its memory (Host Memory)

Device - the GPU and its memory (*Device Memory*)

- Serial code executes in a host (CPU) thread
- Parallel code executes in many *device* (GPU) threads across multiple processing elements

Compiling CUDA C Application

Compiling CUDA C Applications (1)

CUDA C : C with a few keywords

Kernel: function called by the host that executes on the GPU as an array of threads in parallel

Kernel features:

- Parallel portion of application
- Entire GPU executes kernel, many threads
- Can only access GPU memory
- No variable number of arguments
- No static variables

Functions must be declared with a qualifier:

- __global__ : GPU kernel function launched by CPU, must return void
- __device__: can be called from GPU functions
- __host__: can be called from CPU functions (default)
- __host__ and __device__ qualifiers can be combined

Threads

- CUDA threads:
 - Lightweight
 - Fast switching
 - 1000s execute simultaneously
- All threads execute the same code, can take different paths
- Each thread has an ID:
 - Select input/output data
 - Control decisions

Thread Blocks and Grid

- Threads are grouped into **Blocks**:
 - Executes on a single Streaming Multiprocessor (SM)
 - Threads within a block can cooperate Light-weight synchronization
 - Data exchange
- Blocks are grouped into a Grid:
 - Thread blocks of a grid execute across multiple SMs
 - Thread blocks do not synchronize with each other
 - Communication between blocks is expensive
- A kernel is executed as a grid of blocks of threads

Thread Blocks and Grid (1)

Thread Blocks and Grid (2)

Thread Blocks

- Thread blocks allow cooperation
 - Cooperatively load/store blocks of memory all will use
 - Share results with each other or cooperate to produce a single result
 - Synchronize with each other
- Thread blocks allow scalability
 - Blocks can execute in any order, concurrently or sequentially
 - This independence between blocks gives scalability:
 - A kernel scales across any number of SMs

Kernel Execution

- Each thread is executed by a core
- Each block is executed by one SM and does not migrate
- Several concurrent blocks can reside on one SM depending on the blocks' memory requirements and the SM's memory resources
- Each kernel is executed on one device
- Multiple kernels can execute on a device at one time

- A thread block consists of 32-thread warps
- A warp is executed physically in parallel (SIMD) on a multiprocessor

Simple Processing Flow

1. Copy input data from CPU memory to GPU memory

Simple Processing Flow (1)

1. Copy input data from CPU memory to GPU memory

2. Load GPU program and execute, caching data on chip for performance

Simple Processing Flow (2)

- 1. Copy input data from CPU memory to GPU memory
- 2. Load GPU program and execute, caching data on chip for performance
- 3. Copy results from GPU memory to CPU memory

drive. enable. innovate.

The CoE RAISE project has received funding from the European Union's Horizon 2020 – Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

