
Massively Parallel GPU Computing
with CUDA: Introduction

Overview of CUDA Architecture
and CUDA Programming Model

Arnis Lektauers, Riga Technical University
arnis.lektauers@rtu.lv

19. 01. 2022.

mailto:arnis.lektauers@rtu.lv

Day 1: Content

1. Overview of CUDA architecture and programming model:
• GPU evolution
• CUDA GPU architecture

2. Basic CUDA programming:
• Brief revise of CUDA programming model
• Key principles
• Introduction to the concept of threads & blocks
• Host‐device data transfer

3. Hands‐on exercises on writing simple CUDA programs:
• Simple programs with C/C++
• Using CUDA on HPC cluster
• Simple programs with Python and CuPy

Massively Parallel Computing with CUDA: Introduction 2

GPU Computing

• GPU ‐ Graphics Processing Unit
• Optimized for data‐parallel, throughput

computation
• Traditionally used for real‐time rendering
• High computational density ﴾100s of ALUs﴿ and

memory bandwidth ﴾100+ GB/s﴿
• Architecture tolerant of memory latency ‐ 1000s of

concurrent threads to hide latency ﴾vs. large fast
caches﴿

• GPGPU ‐ General Purpose Computing on GPU

GPU

CPU

Massively Parallel Computing with CUDA: Introduction 3

GPU History

1. 1951 ‐ 1976: Formation of the base for
today’s GPUs

2. 1976 ‐ 1995: The early days of 3D
consumer graphics

3. 1995 ‐ 1999: 3Dfx Voodoo: the
game‐changer

4. 2000 ‐ 2006: The Nvidia vs. ATI Era
Begins

5. 2006 ‐ 2013: The modern GPU: stream
processing units a.k.a. GPGPU

6. 2013 ‐ 2020: Pushing GPU technology
into new territory

Massively Parallel Computing with CUDA: Introduction 4

CPU vs GPU Performance

Peak memory bandwidth in GB/s and peak double precision gigaflops for GPUs and CPUs
since 2008

Source: The Next Platform: A Decade of Accelerated Computing Augurs Well for GPUs, 2019

Massively Parallel Computing with CUDA: Introduction 5

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus

What is CUDA?

CUDA ﴾Compute Unified Device Architecture﴿ is a parallel computing
platform and programming model created by NVIDIA and implemented
by the graphics processing units ﴾GPUs﴿ that they produce

• Introduced in February 2007
• CUDA Architecture

• Expose GPU computing for general purpose
• Computing for general purpose

• CUDA C/C++
• Based on industry‐standard C/C++
• Small set of extensions to enable heterogeneous programming
• Straightforward APIs to manage devices, memory etc.

Massively Parallel Computing with CUDA: Introduction 6

CUDA GPU Product Families

PC gaming and
entertainment

Professional graphics and visualization

High performance technical and scientific computing

Massively Parallel Computing with CUDA: Introduction 7

CUDA Parallel Computing Platform

Hardware
Capabilities

GPUDirectSMX Dynamic
Parallelism

HyperQ

Programming
Approaches

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum FlexibilityEasily Accelerate
Apps

Development
Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and
Profiling

CUDA-GDB
debugger

NVIDIA Visual
Profiler

Open Compiler
Tool Chain

Enables compiling new languages to CUDA
platform, and CUDA languages to other

architectures

Massively Parallel Computing with CUDA: Introduction 8

CUDA Software Levels

CUDA Toolkit

CUDA Application

CUDA Libraries (cuBLAS, cuFFT,...)

CUDA Runtime (CUDART)

Driver API (CUDA)

CUDA Driver (User mode)

CUDA Driver (Kernel Mode)

Internal interfaces

User / Kernel boundary

Massively Parallel Computing with CUDA: Introduction 9

GPU Hardware Generations

• Tesla hardware debuted in 2006, in the GeForce 8800 GTX ﴾G80﴿
• CUDA cores: 240
• Compute capability: 1.0‐1.3

• Fermi hardware debuted in 2010, in the GeForce GTX 480 ﴾GF100﴿
• CUDA cores: 512
• 64‐bit addressing
• L1 and L2 cache
• Compute capability: 2.0, 2.1

• Kepler hardware debuted in 2012, in the GeForce GTX 680 ﴾GK104﴿
• CUDA cores: 1536 ﴾GK104﴿, 2880 ﴾GK110﴿
• Compute capability: 3.0, 3.5

Massively Parallel Computing with CUDA: Introduction 10

GPU Hardware Generations (1)

• Maxwell hardware debuted in 2014, in the GeForce GTX 750 Ti ﴾GM107﴿:
• CUDA cores: 640 ﴾GM107﴿
• Compute capability: 5.0

• Two generations of Maxwell GPU:
• 28nm: GM108, GM107
• 20nm: GM206, GM204, GM200

Massively Parallel Computing with CUDA: Introduction 11

GPU Hardware Generations (2)

• Pascal debuted in 2016, in the GeForce GTX 1080 ﴾GP100﴿:
• CUDA cores: 3840
• 16 nm technological manufacturing process
• HBM2 3D memory
• 4096‐bit memory bus
• NVLink ‐ high speed GPU‐CPU interconnection
• Compute capability: 6.0

• Volta debuted in 2017, in the Tesla V100 ﴾GV100﴿

• Turing debuted in 2018, in the GeForce RTX 2080 Ti ﴾TU102﴿

• Ampere debuted in 2020, in the GeForce RTX 3080 ﴾A100﴿

Massively Parallel Computing with CUDA: Introduction 12

GPU Compute Capability

• The compute capability of a device describes its architecture, e.g.
• Number of registers; sizes of memories; features & capabilities

Compute Capability Main Features

1.0 CUDA basic support
1.3 Double precision, improved memory access, atomic functions
2.0 Cache improvements, 3D grid, surfaces, concurrent kernels, P2P
3.0 Improved performance, Warp Shuffle functions
3.5 Dynamic parallelism, Funnel Shift functions
5.0 Maxwell architecture support
6.0 Pascal architecture support
7.0 Volta architecture support
7.5 Turing architecture support

8.0; 8.6 Ampere architecture support

Massively Parallel Computing with CUDA: Introduction 13

Fermi GPU Architecture
Fermi GF100 Processor

• 3.0B Transistors
• 16 SM units
• 870 GFLOP FP64
• 768 KB L2 Cache
• 384‐bit GDDR5
• PCI Express Gen2

L2 Cache

M
em

ory C
ontroller

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Massively Parallel Computing with CUDA: Introduction 14

Kepler GPU Architecture
Kepler GK110 Processor

• 7.1B Transistors
• 15 SMX units

• > 1 TFLOP FP64
• 1.5 MB L2 Cache

• 384‐bit GDDR5
• PCI Express Gen3

Massively Parallel Computing with CUDA: Introduction 15

Fermi GPU Architecture
Graphics Processing Cluster (GPC)

Graphics Processing Cluster ﴾GPC﴿ ‐ dominant high‐level GPU hardware block containing
several Streaming Multiprocessors ﴾SMs﴿

GPC encapsulates all key graphics processing units ﴾e.g., Scalable Raster Engine for triangle
setup, rasterization, and Z‐cull﴿

GPC
Raster Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Massively Parallel Computing with CUDA: Introduction 16

Fermi GPU Architecture
Streaming Multiprocessor (SM)

CUDA Core
Dispatch Port

Result Queue

FP Unit INT Unit

Operand Collector

SM

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Register File (32,768 x 32-bit)

Texture Cache

Core

Core

Core

Core

Core

Core

Core

Core Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

PolyMorph Engine

Vertex Fetch Tessellator Viewport
Transform

Attribute Setup Stream Output

Tex Tex Tex Tex

Streaming Multiprocessor ﴾SM﴿ ‐ the part of the GPU
that runs CUDA kernels

Each SM features:
• 32 CUDA processors ﴾Cores﴿
• Special Function Units ﴾SFUs﴿ for single‐precision
mathematical approximations

• Dual warp scheduler
• Constant cache
• Shared memory
• Hardware for texture mapping
• PolyMorph Engine for vertex processing

Massively Parallel Computing with CUDA: Introduction 17

Fermi GPU Architecture
CUDA Core

CUDA Core
Dispatch Port

Result Queue

FP Unit INT Unit

Operand Collector

Each CUDA Core has a fully pipelined integer
Arithmetic Logic Unit ﴾ALU﴿ and Floating Point Unit
﴾FPU﴿

• IEEE 754‐2008 floating‐point standard
• Fused Multiply‐Add ﴾FMA﴿ instruction for both
single and double precision

• Logic unit
• Move, compare unit
• Branch unit

Massively Parallel Computing with CUDA: Introduction 18

Fermi GPU Architecture
Warp Scheduling

The SM schedules threads in groups
of 32 parallel threads called Warps

Each SM features:
• Two warp schedulers
• Two instruction dispatch units,
allowing two warps to be issued
and executed concurrently

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

tim
e

Dual warp scheduling

Massively Parallel Computing with CUDA: Introduction 19

Pascal GPU Architecture
Tesla P100 GPU Accelerator for Servers

NVLink CoWoS HBM2

Unified Memory

CPU

Tesla
P100

High computing
performance

GPU interconnection
for maximum scalability

Pascal Architecture

High bandwidth memory

Memory Driver

Easy programming with
virtually unlimited memory

Massively Parallel Computing with CUDA: Introduction 20

Pascal GPU Architecture
GP100 Processor

• 56 streaming multiprocessors
• 3584 CUDA cores
• 5.3 TF ‐ double precision
floating point format

• 10.6 TF ‐ standard precision
floating point format

• 21.2 TF ‐ half‐precision floating
point format

• 16 GB HBM2
• 720 GB/s memory bandwidth

Massively Parallel Computing with CUDA: Introduction 21

Pascal GPU Architecture
GP100 Streaming Multiprocessor

• 64 CUDA cores
• Register files: 256 KB
• Shared memory: 64 KB
• Active threads: 2048
• Active blocks: 32

Massively Parallel Computing with CUDA: Introduction 22

Volta GPU Architecture
Tesla V100 GPU Accelerator for Servers

Massively Parallel Computing with CUDA: Introduction 23

Volta GPU Architecture
V100 Processor

• 80 strreaming multitprocessors
• 5120 ‐ standard precision floating

point CUDA cores
• 7.5 TF ‐ double precision floating

point format
• 15 TF ‐ standard precision floating

point format
• 120 TF ‐ tensor core performance
• 16 GB HBM2
• 900 GB/s max. memory bandwidth

Massively Parallel Computing with CUDA: Introduction 24

Volta GPU Architecture
V100 Streaming Multiprocessor

• 64 FP32 cores, 32 FP64 cores, 64 INT32 cores
• 8 new mixed precision FP16 / F32 tensor cores for deep learning matrix
arithmetic

• The streaming multiprocessor is divided into 4 computing blocks, where each
block contains:

• 16 FP32, 16 INT32, 8 FP64 cores, 2 tensor cores
• new L0 instruction cache
• warp scheduler, dispatcher, 64 KB registry file

• Improved L1 data cache for higher performance
• Configurable max 96 KB of shared memory

Massively Parallel Computing with CUDA: Introduction 25

Volta GPU Architecture
V100 Streaming Multiprocessor

Massively Parallel Computing with CUDA: Introduction 26

Turing GPU Architecture
TU102 Processor

• 72 streaming multiprocessors
• 4608 ‐ CUDA cores
• 16.3 TF ‐ standard precision

floating point format
• 576 ‐ tensor cores
• 72 ‐ real‐time rendering kernels
• 24GB GDDR6
• 672 GB/s max memory bandwidth

Massively Parallel Computing with CUDA: Introduction 27

Ampere GPU Architecture
GA102 Processor

• 72 streaming multiprocessors
• 10 752 ‐ CUDA cores
• 30 TF ‐ standard precision floating

point format
• 336 ‐ tensor cores
• 84 ‐ real‐time rendering kernels
• 128 KB ‐ L1 cache/shared memory
• Real‐time high‐quality ray
tracing graphics

Massively Parallel Computing with CUDA: Introduction 28

Basic CUDA Programming

Massively Parallel Computing with CUDA: Introduction 29

Anatomy of a CUDA C/C++ Application

Host ‐ the CPU and its memory ﴾Host Memory﴿

Device ‐ the GPU and its memory ﴾Device Memory﴿

• Serial code executes in a host ﴾CPU﴿ thread
• Parallel code executes in many device ﴾GPU﴿
threads across multiple processing elements

CPU

DRAM

Host

GPU

DRAM

Device

PCIe

Massively Parallel Computing with CUDA: Introduction 30

Compiling CUDA C Application

NVCC Compiler

Host C/C+ preprocessor,
compiler / linker Device just-in-time compiler

Heterogeneous Computing Platform with CPUs, GPUs

Device Code (PTX)Host Code

Integrated C/C++ programs with CUDA extensions

Massively Parallel Computing with CUDA: Introduction 31

Compiling CUDA C Applications (1)

v oi d s e r i a l _f unc t i on(…) {
. . .

}
v oi d ot her _ f unc t i on(i nt . . .) {

. . .
}

v oi d s a x py _ s er i a l (f l oa t . . .) {
f or (i nt i = 0; i < n; ++i)

y [i] = a * x [i] + y [i] ;
}

v oi d ma i n() {
f l oa t x ;
s a x py _s er i a l (. .) ;
. . .

}

NVCC CPU Compiler

CUDA C
Functions

CUDA object
files

Rest of C
Application

CPU object
filesLinker

CPU-GPU
Executable

Modify into
Parallel

CUDA C code

Massively Parallel Computing with CUDA: Introduction 32

CUDA C : C with a few keywords

Kernel: function called by the host that executes on the GPU as an array of threads in parallel

Kernel features:
• Parallel portion of application
• Entire GPU executes kernel, many threads
• Can only access GPU memory
• No variable number of arguments
• No static variables

Functions must be declared with a qualifier:
• __global__ : GPU kernel function launched by CPU, must return void
• __device__: can be called from GPU functions
• __host__: can be called from CPU functions ﴾default﴿
• __host__ and __device__ qualifiers can be combined

Massively Parallel Computing with CUDA: Introduction 33

Threads

• CUDA threads:
• Lightweight
• Fast switching
• 1000s execute simultaneously

• All threads execute the same code, can
take different paths

• Each thread has an ID:
• Select input/output data
• Control decisions

float x = input[threadIdx.x];
float y = func(x);
output[threadIdx.x] = y;

Massively Parallel Computing with CUDA: Introduction 34

Thread Blocks and Grid

• Threads are grouped into Blocks:
• Executes on a single Streaming Multiprocessor ﴾SM﴿
• Threads within a block can cooperate Light‐weight synchronization
• Data exchange

• Blocks are grouped into a Grid:
• Thread blocks of a grid execute across multiple SMs
• Thread blocks do not synchronize with each other
• Communication between blocks is expensive

• A kernel is executed as a grid of blocks of threads

GPU

Massively Parallel Computing with CUDA: Introduction 35

Thread Blocks and Grid (1)

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Massively Parallel Computing with CUDA: Introduction 36

Thread Blocks and Grid (2)

Device

Grid

Block (1, 1)

Host

Kernel

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 0)

Thread
(3, 0)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

blockDim.x

blockDim.y

gridDim.y

gridDim.x

Code execution
workflow

Massively Parallel Computing with CUDA: Introduction 37

Thread Blocks

• Thread blocks allow cooperation
• Cooperatively load/store blocks of memory all will use
• Share results with each other or cooperate to produce a single result
• Synchronize with each other

• Thread blocks allow scalability
• Blocks can execute in any order, concurrently or sequentially
• This independence between blocks gives scalability:

• A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

Block 0 Block 1
Block 2 Block 3
Block 4 Block 5
Block 6 Block 7

Kernel Grid
Launch
Block 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7

Device with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3
Block 4 Block 5 Block 6 Block 7

Massively Parallel Computing with CUDA: Introduction 38

Kernel Execution

…
…
…

CUDA-enabled GPU

CUDA thread CUDA core

CUDA thread block

…

CUDA Streaming
Multiprocessor

CUDA kernel grid

...

• Each thread is executed by a
core

• Each block is executed by one
SM and does not migrate

• Several concurrent blocks can
reside on one SM depending on
the blocks’ memory
requirements and the SM’s
memory resources

• Each kernel is executed on one
device

• Multiple kernels can execute on
a device at one time

Massively Parallel Computing with CUDA: Introduction 39

Warps

• A thread block consists of 32‐thread warps
• A warp is executed physically in parallel ﴾SIMD﴿ on a multiprocessor

Multiprocessor

32 Threads

Warps

=

Thread Block

32 Threads

32 Threads

32 Threads

Massively Parallel Computing with CUDA: Introduction 40

Simple Processing Flow

1. Copy input data from CPU memory to GPU memory

 PCI Bus

Massively Parallel Computing with CUDA: Introduction 41

Simple Processing Flow (1)

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance

PCI Bus

Massively Parallel Computing with CUDA: Introduction 42

Simple Processing Flow (2)

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory

PCI Bus

Massively Parallel Computing with CUDA: Introduction 43

drive. enable. innovate.

The CoE RAISE project has received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

	Overview of CUDA architecture and programming model
	GPU evolution
	CUDA GPU architecture

	Basic CUDA Programming
	Brief revise of CUDA programming model
	Introduction to the concept of threads & blocks
	Host-device data transfer

